974 research outputs found

    Hierarchical clustering and the baryon distribution in galaxy clusters

    Get PDF
    The baryon fraction of galaxy clusters in numerical simulations is found to be dependant on the cluster formation method. In all cases, the gas is anti-biased compared with the dark matter. However, clusters formed hierarchically are found to be more depleted in baryons than clusters formed non-hierarchically. There is a depletion of 10 to 15% for hierarchically formed clusters while the depletion is less than 10% for those clusters formed non-hierarchically. This difference is dependent on the mass of the clusters. The mean baryon enrichment profile for the hierarchically formed clusters shows an appreciable baryon enhancement around the virial radius not seen in the clusters formed without substructure. If this phenomenon applies to real clusters, it implies that determinations of the baryon fractions in clusters of galaxies require data extending beyond the virial radius of the clusters in order to achieve an unbiased value.Comment: 13 pages including 2 tables and 2 figures. Submitted to MNRA

    The Positive Feedback of Pop III Objects on Galaxy Formation

    Get PDF
    We study the formation of molecular hydrogen in cooling gas behind shocks produced during the blow-away process thought to occur in the first collapsed, luminous (Pop III) objects in the early universe. We find that for a wide range of physical parameters the H2H_2 fraction is f≈6×10−3f \approx 6 \times 10^{-3}. The H2H_2 mass produced in such explosions can exceed the amount of relic H2H_2 destroyed inside the photodissociation region surrounding a given Pop III. We conclude that these first objects, differently from the suggestion of Haiman et al 1997, might have a net positive feedback on subsequent galactic formation. We discuss the effects of radiation and the implications of our results for the soft-UV background.Comment: 16 pages, aasms4.sty, LaTeX, 2 figures. submitted to ApJ Letter

    Hydra: An Adaptive--Mesh Implementation of PPPM--SPH

    Get PDF
    We present an implementation of Smoothed Particle Hydrodynamics (SPH) in an adaptive-mesh PPPM algorithm. The code evolves a mixture of purely gravitational particles and gas particles. The code retains the desirable properties of previous PPPM--SPH implementations; speed under light clustering, naturally periodic boundary conditions and accurate pairwise forces. Under heavy clustering the cycle time of the new code is only 2--3 times slower than for a uniform particle distribution, overcoming the principal disadvantage of previous implementations\dash a dramatic loss of efficiency as clustering develops. A 1000 step simulation with 65,536 particles (half dark, half gas) runs in one day on a Sun Sparc10 workstation. The choice of time integration scheme is investigated in detail. A simple single-step Predictor--Corrector type integrator is most efficient. A method for generating an initial distribution of particles by allowing a a uniform temperature gas of SPH particles to relax within a periodic box is presented. The average SPH density that results varies by ∼±1.3\sim\pm1.3\%. We present a modified form of the Layzer--Irvine equation which includes the thermal contribution of the gas together with radiative cooling. Tests of sound waves, shocks, spherical infall and collapse are presented. Appropriate timestep constraints sufficient to ensure both energy and entropy conservation are discussed. A cluster simulation, repeating Thomas andComment: 29 pp, uuencoded Postscrip
    • …
    corecore